Fundamentals of Machine Vision for Railway Applications

8111181818889 311 1P1 01 1 01 00000

Machine Vision - What is it?

Machine vision is the technology and method used to provide imaging-based automatic inspection and analysis.

8111181919999991119191919

And many others....

2017 MARTS Technical Conference - Indianapolis, Indiana

Machine Vision Key Components

At the Center of a Machine Vision System are Cameras

Area Cameras

Line Scan Cameras

Infra-Red Cameras

At the Center of a Machine Vision System are Cameras

Area Scan

81811181

0111101010000 0111P1 011 01

CCD Charged Coupled Device

CMOS Complementary Metal-Oxide Semiconductor

At the Center of a Machine Vision System are Cameras

At the Center of a Machine Vision System are Camera(s)

Digital Sampling

Area Sensor

Pixel Quantization

249	244	240	230	209	233	227	251	255
248	245	210	93	81	120	97	193	254
250	170	133	94	137	120	104	145	253
241	116	118	107	134	138	96	92	163
247	142	121	113	124	115	107	71	179
234	106	84	125	97	108	125	106	204
241	202	102	132	75	73	141	246	252
253	252	244	239	178	199	242	250	245
255	249	244	250	226	231	240	251	253

Typically 8-bits for greyscale

818111811

101110

811118191999991119191919

Bonus Question: If black is represented by 0 What value is represented by pure white?

EXERCISE

81811181

01111010100000011100101

At the Center of a Machine Vision System are Camera(s)

2017 MARTS Technical Conference – Indianapolis, Indiana

Image Data Generated:

Area Scan Camera – Function of Number of Pixels (1MP, 2MP, 5MP. etc) 5 MegaPixel (B/W) = 5MBytes/Image. Four spring packs/rail car= 20MB. 100 rail cars/train = 2 GB for one train. 25 trains/day = 50 GB even if we apply compression 5GB

Data Generated:

Line scan camera – Function of the number Pixels as well (2K, 5K. Etc.) If we have 1 mm per line scan Rail car will require ~ = 30MB/Camera/Rail Car 100 cars x 14 cameras x 30 Mbytes per camera per car = 42 Gbytes

Lens and Filters for Machine Vision Systems

81811181

Figure

- Ensures high quality input to the sensors and not all lenses the same
- Filters enable blocking certain wavelengths
- Filters can also reduce glare

The art of illumination is critical to the MVS

Strobed, Continuous, Broad Spectrum or Narrow Band Light Sources

The art of illumination is critical to MVS

Diffused, Area, Line, Off Angle. Head on, Back Lighting

Computer and Control Electronics:

81811181

81111010101000 011 P1 P1

- Climate Controlled Bungalow
- Electronics Rack
- Industrial Computer
- Control Electronics
- Environmental Control
- Data Communications
- RFID System

Triggering Considerations:

- Speed
- Change in speed considerations
- Stopping? Reverse?
- What component are we imaging?
- Directionality (Uni/Bi)
- Single or multiple image/camera

sampling?

0111101010000001110101101

Figure

81811181

Triggering the System

Software Imaging Consideration:

- Manual Image Review
- Automated Processing
- Blend (Manual/Automated)
- Types of Defects

Bonus Question: If you know who this is a picture of raise your hand.

Software and Image Processing:

Bonus Question:

If you know what is wrong with this truck raise your hand?

Software and Image Processing:

818111811818888888

Environmental & Site Considerations

81111818181898881418181

- Installation location
- Sunlight
- Reflectivity
- Weather
- Diversity of fleet
- Infrastructure Access

Growing Number of Machine Vision Systems for Railway Applications:

Infrastructure Components

Rolling Stock Components

The Need for Machine Vision – North America RR

P1 P1 1 04

- ~200,000 Miles of Track (Wrap the Earth 8 times)
- Wide Variety of Rail Section Sizes

Machine Vision for Rail Wear Assessment

Machine Vision for Rail Surface Evaluation

R DOO

2017 MARTS Technical Conference - Indianapolis, Indiana

Machine Vision for Rail Surface Evaluation

The Need for Machine Vision North American Railroad

(Rough Numbers)

- 1.5 Million Cars/~12M Wheels
- 26,000 Locomotives/~300k Wheels
- Diverse Fleet

Machine Vision for Wheel Wear

81811181181989

81111818181888 8111 P1 811 81

Sec. Co. Co.

2017 MARTS Technical Conference – Indianapolis, Indiana

Machine Vision for Wheel Wear

Outdoor Installation

Indoor Installation

2017 MARTS Technical Conference - Indianapolis, Indiana

Machine Vision for Brake Shoe Evaluation

2017 MARTS Technical Conference - Indianapolis, Indiana

Machine Vision for Truck Evaluation

Machine Vision for Truck Evaluation

Machine Vision for Truck Evaluation

81811181181989898

81111818181888 8111 R1 811 81

CIRCLE IN

Machine Vision for Truck Evaluation

Machine Vision for Coupler Evaluation

Machine Vision for Train Scanning

Growing Number of Machine Vision Railway Applications:

Rolling Stock

- 1) Wheel Measurements
- 2) Brake Measurement
- 3) Truck Component Evaluation
- 4) Coupler Evaluation
- 5) Undercar
- 6) Tread Surface
- 7) Complete Train Scanning
- 8) Tank Cars Doors
- 9) And more coming..

ng NNT STATARNY COLORS LUSS UNT STATARNY COLORS LUSS SOUTH STATERNY SOUTH

811118191999999141919191

Infrastructure

- 1) Rail Measurements
- 2) Track Assessment
- 3) Fasteners
- 4) Tie Assessment
- 5) Joint Bars
- 6) Rail Surface
- 7) Right of Way
- 8) Vegetation
- 9) And more coming..

Summary:

MVS have many design considerations 1) (cameras, lighting, resolution, triggering, etc.) 2) If integrated correctly can yield high resolution imagery for both manual and automated analysis 3) MVS generate Big Data quickly 4) MVS have many environmental and site installation considerations 5) Currently a wide variety of machine vision applications already deployed and more coming..

2017 MARTS Technical Conference – Indianapolis, Indiana

Dan Magnus Dmagnus@KLDLabs.com 631 549 4222

