

Lined Fittings Plates

Topics to Cover

- New style plates
 - UHMW lined and Kynar coated
 - UHMW information
 - Background
 - Strength characteristics
 - Manufacturing processes
 - Kynar
 - Basic Properties and Strengths
 - Chemical compatibility
 - Application Process
 - Lined Plate Field Review
 - Plate condition
 - General Findings
 - Changes and improvements

History

- Lined Fittings Plates have been in service for over 6 years
- By the end of the year we will have about 700 in service
- Multiple plate configurations have been manufactured
- Other UHMW products have been in service for over 17 years

UHMW Background

- Ultra High Molecular Weight Polyethylene (UHMW)
- Commercialized in 1950's
- Thermoplastic
- Molecular weight 2-6 million
- Strength through long chains
- Lightweight
- USDA/FDA Approved

Characteristics

- Impact Strength
 - No break (standard ASTM D256 Izod)
 - Modified test (Two 15° notches)
 - Highest notched impact of any plastic

Characteristics

Figure 1 • Comparative abrasion resistance of different engineering resins. PTFE, polytetrafluoroethylene; PVC, polyvinyl chloride; PMMA, polymethyl methacrylate; EP, epoxy

3400 3000 2700 2500 Volume loss relative to UHMWPE 0000 1800 920 700 660 530 150 160 Phenolic Beachwood PIFE Acetalet UHMMUPE RNC PNAMA Cast Nylon १९ £

 High abrasion resistance

Corrosion Resistance

- Excellent Corrosion Resistance to harsh chemicals
 - 5 year review of the fittings plate showed no degradation to material constantly in vapor space
 - Individually we've had a dip tube in service for 17 years with no issues

Compatability Chart Salco Polyethylene 1 <15% loss in property values.</p> Little or no chemical attack. 122 70 170 Caustic Soda 2 15-30% loss in property values. Ferric Nitrate Minor chemical attack. Ferric Sulfate 3 30-50% loss in property values. Ferrous Chloride Moderate chemical attack. × Ferrous Sulfate Hydrochloric Acid (>20%) **Boiling NR** 1 NR Not recommended. > 50% loss Hydrochloric Acid (50%) **Boiling NR** in property values. Hydrochloric Acid (>40%) 2 * No data available. Hydrofluosilicic Acid Hydrofluorisilicic Acid Hypochlorous Acid Sulfuric Acid (10%) Sulfuric Acid (30%) Sulfuric Acid (60%) Sulfuric Acid (80%) 3 NR * Sulfuric Acid (100%)

Chemical Compatibility

Manufacturing Process

- Starts as powder
 - Ram Extrusion
 - Compression Molding
- Additives
 - -UV
 - Color

UHMWPE Manufacturing

- Engineering
- Bar, Sheet, & Tube (Meets ASTM D2040)
- CNC Mill
- CNC Lathe
- CNC Router
- Friction Welding
- Compression Molding
- Lining
- Quality Control

Friction Welding

- All welds performed in set vertical fixtures
- Interference fit
 - Feed rate
 - Spin rate
 - Interference
- Optimize crystallization
 - 24 hr post weld dwell time
- No additives or adhesives used
- Third part testing, 91-93% weld strength

Lined Fittings Plate

- U.H.M.W. allows for a higher compression/torque vs. rubber lining.
- Kynar[™] coating can be repaired in the field for small areas.

Kynar® PVDF for Chemical Applications

Excellent Properties of Kynar® PVDF

- Resistant to most chemicals and solvents
- Low permeability to most gases and liquids
- High thermal stability
- Mechanical strength at elevated temperature
- Cold weather impact strength
- High purity
- High abrasion resistance
- Readily processible, formable, and weldable
- Resistant to sunlight degradation
- Resistant to nuclear radiation
- Resistant to fungus
- Low flame and smoke characteristics

Testing in Acid Environments

- Handles most acids to elevated temperature without significant change in physical properties.
- Common acids handled by PVDF in industrial applications are: Hydrochloric (0-37%); Nitric Acid (0-71%); Sulfuric (0-97%); Hydrofluoric (0-70%); Acetic (0-50%); Hydrobromic; Phosphoric, Citric, Salicylic, Methane Sulfonic; Chromic.
- In extraction testing, exhibits purity to Semiconductor Grade acids equal to PFA.

Compared with Other Polymers

KYNAR® vs PE, PP & CPVC & PVC

Higher operating temperature
Greater chemical resistance
Greater mechanical strength
Greater resistance to fire
No swelling in hydrocarbons

KYNAR[®] vs ECTFE, ETFE, FEP & PFA

- •Greater mechanical strength
- •More listed components
- •Lower cost
- •Lower processing temperature
- Improved permeation resistance

*KYNAR® PVDF is the hardest and most abrasion resistant high purity polymer

**It has passed many flame and smoke tests, including Factory Mutual 4910 and ASTM E84

***Offers flexible range of products that are compatible/weldable

PVDF Power Coating Fabrication

- Three application methods
 - Spray
 - Liquid
 - Dip
- Thickness can be tailored
 - 10 mils to 100 mils

PVDF Coating Case Study

- PVDF Coatings applied to manways in railcars
- PVDF powder spray applied to strong HCl environment for 5+ years
 - Entire metal substrate is coated
- System creates a chemically resistant cover plate
 - Resists corrosion
 - Resists mechanical damage from product and metal to metal connection
- Methods used for testing: FTIR, GPC, DSC

Photos Courtesy of Salco

Thermal analysis testing confirms no change in MP

	Melting Point
Unexposed	155-160°C
5 year HCl	158.4°C

PVDF COATINGS GOOD IN HCI SERVICE FOR 10+ YEARS

Continuous Improvement

2016 Five Year Fittings Plate Inspection

Just Removed Before Cleaning

Fittings Plate

Base of the plate

Plug Hole Damage

After Cleaning

After Cleaning

Underside After Cleaning

After Cleaning

After Cleaning

Blind Flange Development

Design improvements from left to right

2017 Five Year Plates

Plug Hole Damage – Old vs New

2017 Plate

Overall Condition

Lined Fittings Plates

