# 2005 AAR CAR REPAIR BILLING WHEEL REMOVAL ANALYSIS

Richard Sullivan Cameron Lonsdale Shannon Berge

#### RWMEC

#### Who we are

#### **Approved AAR Wheel Manufacturers**

#### Mission - Support the WABL Committee and the Railroad Industry

#### 7 Year Trend for Wheel Removals



# **Reasons for Increase**

- □ A. Increase in Traffic
- □ B. Change in Rules for Condemning Axles
- □ C. Increase in Usage of Why Made Code 65

## **2004 Effect of High Impact Usage**



## **2005 Effect of High Impact Usage**



# 7 Year Trend for Thin Flange and High Flange







## Administrative



# **Unusual Trends**

Why Made Code 11 Removals have increased 175,000 during the past three years.

# 7 Year Trend – Administrative Wheels



#### Wear Related







#### Environmental



# 7 Year Trend-Environmental Wheels





# Spalling

Spalling starts when a thin localized layer of tread metal is transformed to martensite. The martensite, being very hard and brittle, forms cracks that propagate into the nontransformed material. These cracks turn and grow in fatigue roughly parallel to the tread. When these cracks link together material vacates the tread leaving a pitted surface.

# **Thermal Mechanical Shelling**



## **Failed Wheels**





## 7 Year Trend – Failed Wheels







# **Distribution of Failed Wheels by Year**



# Wheel Removals by Year Manufactured



# **Average Wheel Life/Category**

- □ Administrative
- Wear Related
- Environmental
- □ Wheel Failure

9.8 Years11.0 Years8.8 Years12.2 Years

# **Average Wheel Life/Car Type**

| □ Type of Car  | Wheel Life, Years |
|----------------|-------------------|
| □ Box          | 12.5              |
| Gondola        | 8.5               |
| Hopper         | 9.5               |
| Covered Hopper | 12.6              |
| Tank           | 12.5              |
| Flat           | 7.8               |
| □ Articulated  | 4.5               |

# Wheel Removals by Year Manufactured



# **Distribution of Wheel Types**

| Wheel Type | НТ-СР | NHT-CP | HT-SP | NHT-SP |
|------------|-------|--------|-------|--------|
|            |       |        |       |        |
|            |       |        |       |        |
| AAR Raw    | 91.7% | 5.7%   | .7%   | 1.8%   |
|            |       |        |       |        |
| AAR Accel. | 92.1% | 6.2%   | 0.6%  | 1.1%   |
|            |       |        |       |        |
|            |       |        |       |        |



# **RWMEC Recommendations**

- Already Implemented
  - Accelerate removal of straight plate wheels
  - Proposal to accelerate earlier removal of Non-Heat Treated Curve Plate Wheels
  - Improving their wheel marking procedures

# **RWMEC Recommendations**

- □ Improve air brake testing methods.
- □ Train employees about the proper use of hand brakes.

- Removals for high impact are more common for 36-inch and 38-inch wheels.
- 36-inch wheels have a higher percentage of wheels removed for slid flat, thin flange, builtup-tread and out-of-round.

- Articulated cars have many unique characteristics.
- □ The wheels wear out faster.
- □ They have the most wheels removed for High Flange.

- Covered Hopper Cars have the most wheels for all causes.
- Tank cars and covered hopper cars have the most wheel removals for Why Made Code 78, Slid Flat.

- □ The primary reasons for wheel removals from flat cars:
  - Why Made 64, High Flange
  - Why Made 65, High Impact
  - Why Made 75, Tread shelled

□ Tank cars have the second highest wheel removals for Why Made 74, Thermal Cracks.

- Gondolas, Hoppers and Box Cars have a similar pattern. The most frequent causes for removal for these car types are:
  - Why Made 65, High Impact
  - Why Made 64, High Flange
  - Why Made 60, Thin Flange

# Thanks

- □ RWMEC thanks the AAR for providing 2005 wheel repair data for this analysis and report.
- RWMEC thanks the Railway Supply Institute and MARTS for the opportunity to present this information at the 2006 RSI conference.

# Questions