2005 AAR CAR REPAIR BILLING WHEEL REMOVAL ANALYSIS

Richard Sullivan
Cameron Lonsdale
Shannon Berge
RWMEC

Who we are

Approved AAR Wheel Manufacturers

Mission - Support the WABL Committee and the Railroad Industry
7 Year Trend for Wheel Removals
Reasons for Increase

☐ A. Increase in Traffic
☐ B. Change in Rules for Condemning Axles
☐ C. Increase in Usage of Why Made Code 65
2004 Effect of High Impact Usage
2005 Effect of High Impact Usage

![Graph showing the effect of high impact usage over the years from 1999 to 2005.](image)

- **Out of Round**
- **Thermal Cracks**
- **Tread Shell**
- **Slit Flat**
- **High Impact**
7 Year Trend for Thin Flange and High Flange
WHEEL REMOVAL CATEGORIES

Categories

- Administrative
- Wear Related
- Environment
- Wheel Failure

Bars representing the categories with Administrative having the highest number, followed by Environment, Wear Related, and Wheel Failure.
Administrative

Administrative Wheels

- 07 Obsolete
- 11 Good Condition
- 23 Govt. Reg.
- 25 Owner's Req.
- 90 Mate Wheel

0 100000 200000 300000 400000
Unusual Trends

- Why Made Code 11 Removals have increased 175,000 during the past three years.
7 Year Trend – Administrative Wheels

Administrative Wheels

Administrative Wheels

1999 2000 2001 2002 2003 2004 2005

Wear Related Wheels

- 60=Thin Flange
- 64=High Flange
- 73=Thin Rim
- 98=Reapplication
7 Year Trend – Wear Related Wheels

Wear Related Wheels

1999 2000 2001 2002 2003 2004 2005
Environmental Wheels

- 65 High Impact
- 67 Out-of-Round
- 74 Thermal Cracks
- 75 Tread Shelled
- 76 Tread Build-Up
- 78 Tread Slid Flat
7 Year Trend - Environmental Wheels

- Environmental Wheels
- Graph showing trend from 1999 to 2005 with values ranging from 50,000 to 200,000.
Spalling

Spalling starts when a thin localized layer of tread metal is transformed to martensite. The martensite, being very hard and brittle, forms cracks that propagate into the non-transformed material. These cracks turn and grow in fatigue roughly parallel to the tread. When these cracks link together material vacates the tread leaving a pitted surface.
Thermal Mechanical Shelling
Failed Wheels

66=Flange Cracked
68=Rim Cracked
71=Rim Shattered
72=Rim Spread

Failed Wheels
7 Year Trend – Failed Wheels

Failed Wheels

1999 2000 2001 2002 2003 2004 2005
26-Year Trend
Shell/Spall Wheels

Tread Shelled (Spalled) Wheels

[Graph showing the trend of Tread Shelled (Spalled) Wheels from 1980 to 2004]
Distribution of Failed Wheels by Year

Failed Wheel Distribution

- Y-axis: 0, 20, 40, 60, 80, 100
Wheel Removals by Year Manufactured

Year Built Distribution

0 20000 40000 60000 80000
Average Wheel Life/Category

- Administrative: 9.8 Years
- Wear Related: 11.0 Years
- Environmental: 8.8 Years
- Wheel Failure: 12.2 Years
Average Wheel Life/Car Type

<table>
<thead>
<tr>
<th>Type of Car</th>
<th>Wheel Life, Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box</td>
<td>12.5</td>
</tr>
<tr>
<td>Gondola</td>
<td>8.5</td>
</tr>
<tr>
<td>Hopper</td>
<td>9.5</td>
</tr>
<tr>
<td>Covered Hopper</td>
<td>12.6</td>
</tr>
<tr>
<td>Tank</td>
<td>12.5</td>
</tr>
<tr>
<td>Flat</td>
<td>7.8</td>
</tr>
<tr>
<td>Articulated</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Wheel Removals by Year Manufactured

Year Built Distribution

[Chart showing the distribution of wheel removals by year manufactured, with years ranging from 1959 to 2001 and removal counts ranging from 0 to 80,000.]
Distribution of Wheel Types

<table>
<thead>
<tr>
<th>Wheel Type</th>
<th>HT-CP</th>
<th>NHT-CP</th>
<th>HT-SP</th>
<th>NHT-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR Raw</td>
<td>91.7%</td>
<td>5.7%</td>
<td>.7%</td>
<td>1.8%</td>
</tr>
<tr>
<td>AAR Accel.</td>
<td>92.1%</td>
<td>6.2%</td>
<td>0.6%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>
Distribution of SP Wheels

SP Wheel By Car Type

- Tank Cars
- Covered Hopper Cars
- Hopper Cars
- Gondolas
- Flat Cars
- Box Cars
RWMEC Recommendations

- Already Implemented
 - Accelerate removal of straight plate wheels
 - Proposal to accelerate earlier removal of Non-Heat Treated Curve Plate Wheels
 - Improving their wheel marking procedures
RWMEC Recommendations

- Improve air brake testing methods.
- Train employees about the proper use of hand brakes.
Comparisons

- Removals for high impact are more common for 36-inch and 38-inch wheels.
- 36-inch wheels have a higher percentage of wheels removed for slid flat, thin flange, built-up-tread and out-of-round.
Comparisons

- Articulated cars have many unique characteristics.
- The wheels wear out faster.
- They have the most wheels removed for High Flange.
Comparisons

- Covered Hopper Cars have the most wheels for all causes.
- Tank cars and covered hopper cars have the most wheel removals for Why Made Code 78, Slid Flat.
Comparisons

- The primary reasons for wheel removals from flat cars:
 - Why Made 64, High Flange
 - Why Made 65, High Impact
 - Why Made 75, Tread shelled
Comparisons

- Tank cars have the second highest wheel removals for Why Made 74, Thermal Cracks.
Comparisons

- Gondolas, Hoppers and Box Cars have a similar pattern. The most frequent causes for removal for these car types are:
 - Why Made 65, High Impact
 - Why Made 64, High Flange
 - Why Made 60, Thin Flange
Thanks

RWMEC thanks the AAR for providing 2005 wheel repair data for this analysis and report.

RWMEC thanks the Railway Supply Institute and MARTS for the opportunity to present this information at the 2006 RSI conference.
Questions