From the Sublime to the Ridiculous: Life in the Fast Coatings Lane

Vijay Datta MS and Dr. Mike ODonoghue, International Paint LLC
MARTS meeting 4th Oct, 2016
Sublime – Ridiculous Agenda

- Faster, Faster, Faster?
- Sublime to the Ridiculous
- Problems
- Solutions

Unless otherwise agreed in writing by AkzoNobel, all products supplied together with all technical service, information, advice and recommendations given are subject to our standard terms and conditions of sale which are available on request. Any information given here is for guidance only and is provided without any representation or warranty of any kind, express or otherwise. Further, AkzoNobel accepts no control or liability for the appropriateness of any product or the surface, structure or design to which our products are applied or the application process itself. You should seek independent expert advice as to the appropriateness of a particular design or structure for use of our products. We also strongly recommend that independent testing and/or assessment is carried out prior to the application of any product to determine suitability for use.
Why Line Tanks?

Corrosion protection
• Crude oil tanks: bottom and ≈ 1 meter up the side
• Corrosive chemicals (e.g. aqueous): Whole tank

Protection of product purity
• Finished products: Line whole tank to prevent contamination with e.g. rust particles

Materials Integrity
• Some chemicals e.g. ethanol, may cause stress corrosion cracking of welds → line whole tank
Cargo Storage Temperatures

- Epoxy
- Phenolic epoxy
- Novolac epoxy

Thin film systems

Thick film systems
Chemical Resistance - Lining History

- Epoxy
- Phenolic Epoxy
- Novolac Epoxy
- Polycyclamine cured Novolac Epoxy
- Vinyl Ester
- Novolac Vinyl Ester
- Novolac Epoxy
- Phenolic Epoxy
- Epoxy

Big Innovations

Chemical Resistance

Technology
Faster, Faster, Faster: Solvent-Free Epoxy Advantages

- Quick return to service
- Usually a one-coat lining system
- Can be applied at high film builds
- No risk of solvent entrapment
- No inter coat adhesion issues
- Can save a great deal of time and labour
- Excellent adhesion to prepared steel substrate
Sublime to Ridiculous - Solvent-Free Epoxy Advantages

- Minimal OH&S issues
- No worker exposure or solvent LEL concerns
- Seen as being environmentally friendly
- Edge Retention
Solvent-Free Epoxy Disadvantages

- Higher viscosities of one or both components
- Difficulty in mixing
- Shorter pot life
- More complicated equipment: paint heaters, proportioning pumps, static mixers, etc.
- Not for use in vessels with complex geometry
- Lower chemical resistance
“The more complicated the equipment and the shorter the pot life, the greater the chance that things will go wrong with Solvent-Free Epoxies in the field”

Mark Dromgool, KTA Tator Australia
Application Equipment: Plural Spray
A good rate of success of some facility owners with Solvent-Free Epoxy linings, does not always translate well to other regions, contractors or owners.
Always be ready for any surprises in life...
Value of Stripe Coating and Possible Issues

- Very important for tank and vessel linings
- SFE materials are not very tolerant to stripe coating
- Film thickness control
- Too viscous to mix properly and apply correctly
- Elevating the temperature shortens the pot life
- Mix ratio errors are magnified
AHA – Perhaps Solvents are Really Good?
We all love solvents
Chemistry - Solvent

- The absence of solvent denies the coating of lubricity
- Solvent provides many advantages during the mixing, induction, application, reaction, drying and curing phases
- Solvents lower the surface tension of the coating which means better wetting of the substrate
- Slower gelling times often lead to higher wet and dry adhesion
Coating cure is not simple and uniform as often depicted. Rather, it is nucleated and autocatalytic.

Like a crossword puzzle, having something makes it easier to fill-in.
Solvent-Based Epoxy Features

- Easier to mix and have a longer and more usable pot life
- Can accept some site-added solvent to help make the coating system adjust for different climatic or substrate conditions and to suit the available application equipment
- Usually result in more uniform film build and less chances of overbuild
- Can achieve higher crosslink densities and more complete cure due to the lower viscosity, more lubricity and hence better molecular mobility of the reactive species
- Are much more easily handled by coating application contractors with a variety of skill levels
Solvent-Based Epoxy Features

- Have a slower gel time after application which aids flow into the surface profile and assists release of air from the film
- Quite tolerant of a variety of weather, substrate and other application conditions
- Multiple coats minimise the chances of concurrent pinholes or defects
- Have superior wetting due to the lower surface tension that the solvent brings to the resin binder
- Apply well as stripe coats without the compromises to their chemistry and integrity due to variations in the effective induction time
Solvent-Based Epoxy Disadvantages

- Relatively low volume solids
- Multiple coats usually required.
- Ventilation mandatory
- Hazardous solvents - an OSHA issue, etc.,
- Danger of solvent entrapment
- Longer cure times
- Poor productivity
Where Do We Go Now?
Shift to New Technology Solvent-Free Epoxy Technology

The Tour De Force Solutions
Next technology Solvent-Free Epoxy Lining

Solvent-Borne Epoxy

- Multiple coats (2-3)
- Longer cure time
- Low film build

New Technology Solvent-Free Coating

+ Low Viscosity
+ Long Pot Life
+ Fast cure
+ Single Coat
+ Film build 15-35 mils
+ No Blushing
+ High Performance
+ High Heat resistance
+ Excellent wetting
+ Single Leg Equipment

Traditional: Solvent-Free Coating

- High viscosity
- Poor wetting
- Short pot life
- Plural Equipment

...the Best of Solvent-Free and Solvent-Borne in 1 easy to use Lining
Balancing Act – Judicious Lining Selection
Next Generation Lining Technology

Single Leg Airless or Plural Component spray applied
- No thinning required
- No heating required
- Pot life of 70 minutes @ 77°F/25°C

Single Coat application
- Typical 10-14 mils DFT
- Flexible Lining
- No Amine Blush

Services Excellent
- FDA Approved
- Benzyl Alcohol and BPA Free
- High Temp Crude Oil

Fast Cure
- Holiday test 5 hours @ 77°F/25°C
- Bake Schedule @150°F is 2 hours

High solids, Ultra Low VOC
- 96% ±2% Volume solids
- 0.37lb / gal (45 g./Litre)
3rd Party Independent Laboratory Testing

300 °F

250 psi
<table>
<thead>
<tr>
<th>Coatings</th>
<th>Sample ID</th>
<th>Testing Phase</th>
<th>Pre-Test</th>
<th>Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thickness (mils)</td>
<td>Adhesion*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas</td>
<td>24.1 - 24.8</td>
<td>A</td>
</tr>
<tr>
<td>E - 1</td>
<td></td>
<td>Hydrocarbon</td>
<td>26.0 - 27.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water</td>
<td>24.7 - 26.1</td>
<td></td>
</tr>
<tr>
<td>International Paint Environline 2405</td>
<td>E - 2</td>
<td>Gas</td>
<td>20.4 - 20.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydrocarbon</td>
<td>20.6 - 22.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water</td>
<td>23.0 - 23.5</td>
<td></td>
</tr>
</tbody>
</table>

*Pre-test adhesion and EIS was conducted on the un-tested reference panels.

Note: After test, the pH of the water solution was about 6.0.

Rating Key:

<table>
<thead>
<tr>
<th>Blistering</th>
<th>Rated as per ASTM D714</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Density</td>
</tr>
<tr>
<td>#2 #4 #6 #8</td>
<td>Medium (M)</td>
</tr>
<tr>
<td>Large.....Small</td>
<td>Medium-Dense (MD)</td>
</tr>
<tr>
<td>Dense (D)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adhesion</th>
<th>Rated as per parallel scribe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coating may shear within itself but does not release from substrate</td>
</tr>
<tr>
<td>B</td>
<td>Some metal is visible but more than 50% of the coating remains adhered</td>
</tr>
<tr>
<td>C</td>
<td>More than 50% of the coating is removed</td>
</tr>
<tr>
<td>D</td>
<td>All coating releases between scribes but remains firmly adhered adjacent to cuts</td>
</tr>
<tr>
<td>E</td>
<td>No bond exists between coating and substrate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Colour Change</th>
<th>None (N)</th>
<th>Slight (S)</th>
<th>Moderate (M)</th>
<th>Severe (SE)</th>
</tr>
</thead>
</table>

Date: Jan 13 – Feb 12, 2014
Duration: 30 Days
Tested by: J. Cortes, S. Rao
Pressure at Normal Temp.: 145±15 psi @ 120±3°C
Pressure at Spike Temp.: 210±15 psi @ 146±3°C
Gas Phase: 50% H$_2$S and 50% CO$_2$
Hydrocarbon Phase: Toluene Kerosene @ 1:1 by Volume
Water Phase: 75 ppm Cl in Water with pH of 3.5
Laboratory Testing
Deionized Water Immersion for 12 Months @ 212F/100C

Pre Test Adhesion:
1522 psi/10.5 MPa

Post Test Adhesion:
1261 psi/8.7 MPa
Laboratory Immersion Testing
High Temperature Crude Oil for 6 Months

RESULTS:
Performed as a liner for crude oil and water. Absolutely no corrosion.

Crude Oil Phase

Water Phase

Crude + 3% NaCl @ 203°F/95°C

Crude + 3% NaCl @ 203°F/95°C

Established Product Comparison
Chemical Resistance

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Test Method</th>
<th>Specification Details</th>
<th>Typical Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to Corn Syrup @ 80C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to Molasses @ 60C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to Vegetable Oil @ 60C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to Lard @ 60C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to PP and HDPE Plastic Pellets @ 60C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to Dry Flour, Sugar, Starch @ 60C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to 5% Beers @ 60C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
<tr>
<td>Immersion</td>
<td>ISO 2812 Part 2 – “Resistance to 5% Vodka @ 60C”</td>
<td>1×300µm/500µm dft applied directly to Sa2½ blasted steel.</td>
<td>No film defects following 3 months exposure.</td>
</tr>
</tbody>
</table>
Easy Maintenance Use – Complex Geometry

Applicators Comments: “One of the easiest 100% solids material I have sprayed, it has a great pot life for brushing out the welds and hard to coat areas.”
The End