Improved Brake Systems
AAR SRI Project

Steve Belport
AAR Brake Systems Committee
Improved Brake System Performance

Objective:
♦ Improve brake system performance by investigating the root causes of poor performance
♦ Demonstrate potential solutions

End Product(s):
♦ Improved braking, improved brake shoe life, improved wheel life

Major Tasks in 2010:
♦ Improved truck brake rigging
 • Static and dynamic brake shoe force testing of improved designs
♦ Evaluate four candidate remote operated handbrake systems
♦ Monitor electronically controlled pneumatic (ECP) brake system performance and reliability
Asymmetric wheel wear (SRI 2A):

- Identified on 134 coal cars in fleet of Mitsui Rail Capital
- Associated with:
 - Truck & car body brake rigging asymmetries
 - Asymmetric tread wear due to asymmetric location of the shoe on the tread & shoe contact
 - Increase in brake forces?
 - Seems to be endemic to NA fleet
- Results in:
 - Reduced wheel life
 - Possible increased track / rail forces / stresses
 - Associated high conicity wheels
- Suggested remedies:
 - Symmetric brake rigging
 - Altered shoe shape
- Tournay to make extended presentation by telecon to next BSC meeting
Improved Brake System Performance

Progress: Improved Truck Brake Rigging

- Demonstrate designs that provide improved distribution of brake shoe forces
- TAG sourced for ideas and feedback
- Nine rigging designs for evaluation
- Tests include:
 - Static shoe force tests – conducted June 2010 (8 systems tested)
 - Dynamic shoe force tests – fall 2010
 - Instrumented brake shoes
 - Standard 3-piece truck and M-976 truck
 - Brakes applied/released in moving car
 - Apply brakes in tangent prior to curve, release brakes in tangent following curve
 - Apply brakes in body of curve, release brakes in tangent following curve
 - Apply brakes in tangent prior to curve, release brakes in body of curve
Rigging Designs

1. Base case: normal unit beams
 • Sliding contact between beam and side frame
 • Performance will be used to quantify any improvements in the other designs
 • Commercially available
2. Modified unit beams
 • Small tab welded to bottom of beam end extension
 ▲ Minimize reaction moment in side frame
 • Design concept
3. Longer unit guide bracket and beam end extension
 - Longer end extension reacts in line with brake force — also limits beam droop and taper shoe wear
 - Design concept
4. Unit beams with link brake system

4-bar linkage:
- Restricts beam pitch & lateral motion
- Reacts moments on beam
- Commercially available
5. Modified unit beams with link brake system

4-bar linkage:
- Restricts beam pitch and lateral motion
- Reacts moments on beam
- Design concept
6. Swing hanger beams with link brake system

4-bar linkage:
- Restricts beam pitch and lateral motion
- Reacts moments on beam
- Acts as a safety support for hanger beam
- Design concept
7. Swing hanger beams

- Supported from swing link to eliminate sliding friction
- No beam end extension
- Commercially available
8. Swing hanger beams with extension nubs
 • End extension restricts lateral motion and acts as safety support device
 • Design concept

Swing link fits here
Small end extension

Swing link fits here

© TTCI/AAR, 2010, p12
9. Swing hanger beams with guides
 - Designed to prevent wear or chatter as it engages
 - Not available for testing by TTCI until September
 - Design concept (US Patent 7,527,131 B1)
SRI 5A: Improved Brake System Performance

♦ Preliminary static shoe force test results

- Evaluation based even distribution of shoe forces
- Swing hangers (#7, #8) performed very well
- Unit beams (#1A&B, #2, #3) performed reasonably well (new condition)
- Link systems (#4, #5, #6) and were over-constrained in this test with bent truck levers – have had much better results in past with straight levers
SRI 5A: Improved Brake System Performance

♦ Dynamic curving tests with instrumented brake shoes – Fall 2010

- Instrumented clevis pin
 - 12,500 lbs capacity
 - Friction retarding force

- Mini Load Cell x 2
 - 10,000 lbs capacity
 - Normal force
 - Top/Bottom force distribution
SRI 5A: Improved Brake System Performance

♦ Path Forward

- Improved truck brake rigging
 - Conduct static testing on system #9 when it becomes available
 - Calibrate instrumented brake shoes
 - Conduct dynamic testing, fall 2010
- Continue evaluation of four candidate remote operated handbrake systems at FAST
- Continue to monitor ECP brake system performance and reliability