Loaded Car Hunting

Mechanical Association Railcar Technical Services

Loaded Car Hunting and Suspension Systems

18 September 2009

Jay P. Monaco
Vice President Engineering
Amsted Rail Company, Inc.
Loaded Car Hunting

Suspension, vehicle and track are a system
Demand for Productivity Increases

- Increased train velocity and improved asset utilization …
 - Longer trains
 - Heavier car loads
 - More lading per railcar / higher C.G, etc.

- Increased railcar sensitivity to …
 - Load balance and vehicle stability
 - Speed and track conditions
 - Car construction

= More demanding operating environment
Many Moving Parts - Wear and Tear

- System interaction impacts performance
 - Suspension and coupling systems
 - Freight car structure and body
 - Track systems and operations
- Desired component and system attributes
 - Quality / integrity / reliability
 - Reduced in-service failure and downtime
 - Long life / low maintenance / reduced wear

Operating environment is a complex system

- Safety / security / service reliability
- System capacity and efficiency
- Asset utilization
- Train velocity
- Productivity
Truck System Performance

More demanding environment

Truck system performance

AAR Specification M-976

Steering

Curve negotiation with minimal effect on high speed stability

Reduced wheel and track wear

Suspension

Damping of vertical and lateral inputs; truck squaring

Reduced impact of loading conditions
M-976 Performance Requirements

- **Tightened parameters** for heavier car loads
 - To be easier on track (and stay on track)
 - To reduce car inputs and component wear
- **Test regimes** (empty and loaded covered hoppers @ TTCI test track)
 - Hunting (loaded car hunting threshold being considered for M-976 re-write)
 - Steady state curving
 - Curve resistance
 - Spiral
 - Twist, roll
 - Pitch, bounce
 - Yaw, sway
 - Dynamic curving
Key Truck System Components

• Stability / hunting control
 – Squaring; dimension control; friction wedges
 – **Center bowl liner** (loaded car) – rotational resistance / friction damping (too low = stability issues)
 – **Side bearings** (light car) – rotational resistance / friction damping; railcar roll control

• **Reduced rolling resistance**
 (to reduce wheel tread wear and wheel flange wear)
 – Low torque bearings
 – Passive steering components
 – Round / consistent tape wheels
Passive Steering System

• Steering = axle movement to negotiate curves (axles move out of parallel)
• Elastomeric pad and special metal adapter enable steering (and absorb energy)
 – Pad deflects in shear with controlled stiffness (too stiff = harder on wheel; too soft = hunting / stability issues)
 – Stored pad energy restores axle on tangent track
 – Standard metal adapters can stick due to friction, causing wheel / flange scrubbing

• Curving vs. Stability…
 – Passive mechanical system is a compromise
 – Balance curving resistance and high speed stability

Reduces truck component loads and wear
Adapter Plus Bearing Adapter

- Protects pedestal roof and thrust lugs from wear
- Controlled resistance, tight fit (+ clearance => hunting)
- Improves Radial Wheelset Alignment
 - Improve Curving
 - Passive Steering
- Evenly distributes bearing load
 - Increase life of roller bearing
 - Reduce Rolling Resistance
- Attenuates vertical impacts
- Nearly 1.5 million in service globally
 - Excellent track record
 - Improve wheel wear (Brazil)
 - Reduce noise (Australia)
The Problem

• ~ 6,000 5,161 c.f. grain hopper cars built 2004 - 2006
 Grain export service to ports in Mexico
 No indication of pad degradation for 1 ½ - 2 years
 Center bowl liner low friction lowered hunting threshold
 Side bearing elements lost preload, reducing capacity to dampen hunting oscillations

• Several inputs simultaneously caused severe hunting
 – Combination of speed / track condition / loading condition can cause pad degradation as an isolated event
 – 10 percent of cars experienced problem
 – One pad affected; other seven were okay
System Testing

- **Field testing in revenue service**
 - Instrumented car in Granite City, IL
 - Started in November 2006
 - Loaded hunting evident during instrumented trips, 50 – 60 mph speed
 - New wheelsets – hunting eliminated; worn wheel profiles impact hunting modes
 - Imbalanced loading affects stability

- **Laboratory testing of pads**
 - Existing and new compounds / configurations
 - Using field test data, replicated pad degradation
 - Hysteretic heat generation at higher frequencies during severe hunting causes breakdown from inside out
Approaches to LCH problem

• **Attenuate the inputs** that are resulting in loaded car hunting
 - Track profile; track grinding practices
 - Track gauge; track maintenance
 - Worn wheel profile / maintenance
 - Control imbalanced loading
 - Overall vehicle stability; torsional stiffness
 - Suspension specific to vehicle and service type

• **Modify equipment** to mitigate the effect of the inputs
 - Suspension equipment modifications
 - Additional equipment – dampers, springs…
 - Car body modifications
 - Modified wheel profile
Motion Control ® Testing at TTCI

L1 Adapter Motions
Comparison of Standard Pads vs. Steel Adapter
55mph Loaded Car Hunting Speed

Lateral Displacement (in)

Longitudinal Displacement (in)

- Standard Pads
- Steel Adapter
Motion Control® Testing at TTCI

L1 Adapter Motions
Comparison of Rubber Pads vs. Steel Adapter
55mph Loaded Car Hunting Speed

- Lateral Displacement (in)
- Longitudinal Displacement (in)

- Dotted Line: Rubber Pads
- Solid Line: Steel Adapter
Motion Control® Testing at TTCI

L1 Adapter Motions
Comparison of Stiff Pads vs. Steel Adapter
55mph Loaded Car Hunting Speed
Motion Control ® Testing at TTCI
Findings

- Softer pad material = higher deflections
- **Stiffer** pad material = lower deflections
 - Less movement per pound of force
 - Less energy input - reduced hysteretic heating
 - Increase in hunting threshold
- **Metal** adapters in same car series and service showed uneven wheel / flange wear; M-976 trucks showed more even wear
- **Solution** = Stiffer pads with higher friction center bowl liners surviving in actual service; maintaining benefits of curving and even wear
- **Alternatives** exist to mitigate hunting and associated wheel tread scrubbing
What does this mean for maintenance?

- Heavier loads and longer trains = increased wear and tear
- Inspection is required to determine necessary repairs, and/or…
 - Wayside detector, TPD or WILD setouts
 - Scheduled (Preventive) maintenance
 - Reactive (Corrective) maintenance
 - Alternatives?
- Maintenance budgets are tight, but asset utilization and uptime are critical
Maintenance Philosophy

Preventive Maintenance
- **Scheduled** maintenance based on life statistics of similar equipment
- **High** maintenance costs - *unnecessary* maintenance
- **Low** operating costs – limited downtime scheduled

Corrective Maintenance
- **Reactive** maintenance - run equipment to **failure**; *no* scheduled maintenance
- **Low** maintenance costs – performed only after **failure**
- **High** operating costs – downtime and damage

Condition Based Maintenance
- Maintenance only *when required*
- Availability of the equipment is guaranteed
- Extends useful life of equipment
- *Unnecessary maintenance is avoided*
- *Overall cost* is reduced
- *Condition monitoring* adds cost

* Condition monitoring adds cost

© 2009 Amsted Rail Company, Inc.
Condition Based Maintenance (CBM)

- Preventive maintenance may prevent some failures, but premature failures still occur.
- **Corrective maintenance** promises lower costs, but cost of reaction to failures is high.
- Benefits of **CBM strategy**
 - Lower operating costs
 - Extend useful life of equipment
 - Increase productivity and maximize asset uptime
 - Increase network velocity and reduce congestion
- Execute **CBM strategy**
 - Consider operating environment
 - Measure and analyze parameters real-time
 - Relay message to effect maintenance or repair (pre-emptively – *before* a failure occurs)
Fleet Maintenance with CBM

- A Condition Based Maintenance strategy should enable improved asset utilization and lower maintenance costs
- Knowledge of maintenance issues and volume will accelerate with CBM
- We can expect a better life cycle cost with CBM than is realized with current practices
- Diagnostic / prognostic technologies are progressing rapidly and becoming feasible and cost-effective