EFFECTS OF WHEEL/RAIL CONTACT PATTERNS and VEHICLE PARAMETERS on LOADED CAR HUNTING

Nicholas Wilson, Huimin Wu, Harry Tournay, Curtis Urban
Transportation Technology Center, Inc
Pueblo, CO, USA
In 2006, failures of primary suspension adapter pads were reported on a particular type of grain car:

- Loaded high capacity (286k lbs) grain hoppers
- Truck hunting: *loaded hunting is unusual*
- M-976 trucks with improved tracking
- Routes with specific rail wear patterns and tighter gage
Primary Suspension Adapter Pads

- Polymer pads improve axle steering, reduce W/R forces and rolling resistance
- Loaded Hunting motions appeared to cause failures:
 - Primary suspension pads
 - If a pad does fail, it is typically only 1 out of 8 in a car
 - Constant contact side bearings (CCSB)
Initial Lateral Stability (Hunting) Tests

- 50 mph Tests performed at TTC
Initial Lateral Stability (Hunting) Tests

- Tests performed at TTC

<table>
<thead>
<tr>
<th>Wheel Profile and Conicity</th>
<th>Empty ~ Standard Pads</th>
<th>Loaded Hunting Threshold Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Summer Standard Pads</td>
</tr>
<tr>
<td>Worn λ>0.6</td>
<td>65 mph</td>
<td>47.5 mph</td>
</tr>
<tr>
<td>KR λ>0.2</td>
<td>80 mph</td>
<td>65 mph</td>
</tr>
<tr>
<td>AAR1B λ>0.05</td>
<td>>80 mph</td>
<td>75 mph</td>
</tr>
</tbody>
</table>

© TTCI/AAR, 2009, MARTS Chicago, September 2009 p5
Initial Hunting Test Conclusions

- Loaded car hunting a function of
 - Car body mass and inertial properties
 - High W/R Conicity
 - Worn wheels
 - Worn rail profile in straight track
 - Adapter pad stiffness

- Loaded car hunting also a function of:
 - Center plate friction
 - Steel center plates reduced hunting
 - Side bearing friction restraint
Grain Car Wheel Wear and Effects on Conicity

- **Conicity (λ) on TTCI Hunting test zone**

- Relatively low wear in this region

- Higher wear in this tread region

- **Average Conicity, RTT 34 Rail**

 - Mileage (*1000)
 - Conicity
 - New AAR-1B
 - Avg
 - Max
 - Min

- 96,000 miles
- 160,000 miles
- 35,000 miles

© TTCI/AAR, 2009, MARTS Chicago, September 2009
High Conicity W/R Contact Conditions

- Increased conicity on tangent track after ~ 160,000 km
- Tangent rail head profiles:
 - Certain new rail sections
 - Tight gauge
 - "Flattened" crowns
 - Flow to the gauge corner
Wheel / Rail Profiles

- Accelerated initial flange wear

- Associated with initial mismatch & 2-point contact between new wheel & worn high rail in curves
Wheel / Rail Profiles

- Reduced flange wear after ~ 50,000 miles

Associated with single point contact & a large radius differential generated on the high rail in curves
W/R Conicity as a Function of Mileage, Car and Truck Arrangement

- **Car/Truck types**
 - Gen I: Grain car with steel adapters
 - Gen II: Grain car with polymer adapters
 - Coal: Coal car with steel adapters
 - Coal HD: Coal car with polymer adapters

- **Root causes for differences are still unknown but suspected to be a function of:**
 - Curving ability
 - Vehicle stability
W/R Conicity as a Function of Rail Profiles for a Particular Grain Car Route

- Analysis of conicity for 108 axles on 25,000 measured rail profiles from 19 miles of tangent track

Conicity ≈ 0.1

Rails producing lower conicity

Conicity ≈ 0.4

Rails producing higher conicity

Mainly due to worn wheels

Percentage of Exception (Wheels)
New AAR-1b wheels produce low conicity on all rail profiles.

Rails with a low rail shoulder produce lower conicities, high shoulder gives high conicity.

Conformal contact tends to produce low conicity.

Flattened rails, gauge flow and narrow gauge produce high conicities.
Tangent Track W/R Conicity Summary (cont.)

- Tight gauge is highly correlated to high conicity in tangent track

<table>
<thead>
<tr>
<th>Distance (feet)</th>
<th>Gage Spacing inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>12200</td>
<td>56</td>
</tr>
<tr>
<td>12220</td>
<td>56.1</td>
</tr>
<tr>
<td>12240</td>
<td>56.2</td>
</tr>
<tr>
<td>12260</td>
<td>56.3</td>
</tr>
<tr>
<td>12280</td>
<td>56.4</td>
</tr>
<tr>
<td>12300</td>
<td>56.5</td>
</tr>
<tr>
<td>12320</td>
<td>56.6</td>
</tr>
<tr>
<td>12340</td>
<td>56.7</td>
</tr>
<tr>
<td>12360</td>
<td>56.8</td>
</tr>
<tr>
<td>12380</td>
<td>56.9</td>
</tr>
<tr>
<td>12400</td>
<td>57</td>
</tr>
</tbody>
</table>

- High conicity was found on only 10% of track
- Rail grinding to relieve reduce flattened rails, relieve the gauge corner and remove metal flow in the gauge corner could reduce conicity
- A more conformal new wheel profile could change the rapid initial wear pattern of new wheels
Truck Hunting and Warp Dynamics

- Loaded hunting tests revealed:
 - Predominantly in-phase motion (warp) of the wheelsets & truck bolster
 - Little longitudinal deflection of the adapter pads
 - Dependence on moments due to the adapters / adapter pads & truck rotation on stability
Truck Warp Test Results

Avg. stiffness = 140 klb-in/mrad

High warp restraint similar to previous tests of the same truck type when friction wedges have little motion

Avg. stiffness = 12.5 klb-in/mrad

Warp stiffness reduced by factor of about 11 due to friction saturation with large wedge motions from combined body vertical/lateral motions
NUCARS® simulations to evaluate W/R forces and effects of Carbody and Suspension Parameters

40,000 lbs net lateral axle force
W/R Forces due to Loaded Hunting

- NUCARS® simulations of loaded grain car hunting show potential for very high W/R forces

- Large Net Axle L/V ratios could cause track panel shift

- Large truckside L/V could cause gauge widening and rail rollover
Progression to Loaded Car Hunting

- Accelerated wheel wear occurs in curves as a result of a “mismatch” between the high rail profile & that on tangent track
 - 2-point contact
 - High rail “conditions” the wheel of a car making flange contact to a conformal profile

- “Conditioning” results in high conicity, especially on particular sections of tangent track
 - New rail of particular section
 - “Flattened” rail with material flow to the gauge corner
 - Sections of track with tight gauge
Progression to Loaded Car Hunting (cont.)

- High conicity on tangent track
 - On sections where higher speeds occur
 - High creep forces under load excite the wheelsets
 - to yaw/warp the truck frame
 - to yaw within the truck frame on soft adapter pads
- Wheelset & truck yaw excite particular (longer) car bodies in a yaw-dominated mode (includes roll)
- Car body yaw and coupled roll motions saturate the truck wedge system, reducing the warp restraint
- Reduced warp restraint results in resonance between wheelset, truck & car body yaw above certain threshold speeds
Progression to Loaded car Hunting (cont.)

- Truck warp restraint breaks-down almost completely
- Wheelset hollowing (& conicity) increases as a consequence of the hunting motion
- Loaded car hunting occurs:
 - At progressively lower speeds
 - On increasingly longer sections of tangent track
- Pad failure results together with degradation of constant contact side bearing elements
Loaded Car Hunting: Conclusions

- Loaded car hunting is a system problem:
 - Only certain car types – many cars with trucks do not hunt
 - Depends on truck center spacing, car body inertial characteristics (centers of gravity & moments of inertia associated with high capacity cars for low density bulk products)
 - Wheelset and truck constraints (adapter pad stiffnesses, loss of warp restraint due to friction wedge motion)
 - Track (rail profile mismatch, rail deformation, tight gauge)
Many types of car with these trucks do not experience loaded car hunting:

- Need “tune” the car and truck suspension parameters to the specific car body characteristics:
 - Truck spacing, inertial parameters (CG height, yaw and roll moments of inertia)
 - Wheelset and truck constraints (adapter pad stiffnesses, truck warp restraint)

Loaded hunting may lead to very high W/R forces

- Possibility for increased risk of track damage and derailment (Oct 2009 tests will measure forces w/IWS)
Way Forward: Standards and Testing

◆ Primary Suspension Pad Durability Standards
 ● AAR MSRP, Volume H, Section 4.3.2

◆ Develop M-976 and Chapter 11 Loaded Hunting Test/Analysis Requirements (2009)
 ● What wheel profile?
 ● What car body and inertial parameters? (M-976)
 ● What performance criteria?

◆ Loaded Hunting Tests at TTCI (Oct/Nov 2009)
 ● Support development of loaded hunting tests
 ● IWS to measure W/R forces while hunting
Way Forward: Wheel and Rail Profiles

- Rail grinding to relieve reduce flattened rails, relieve the gauge corner and remove metal flow in the gauge corner could reduce conicity

- A more conformal new wheel profile could change the rapid initial wear pattern of new wheels
 - A new wheel profile design for freight cars is being evaluated at TTCI to replace the AAR-1b
 - Based on worn wheel shapes
 - More conformal to existing rail profiles in curves and straight track
 - Narrower flange for more gage clearance
Way Forward: Car and Truck Design

◆ Immediate:
 ● Replace adapters & pads with standard adapters
 ● Consequent reduction in curving performance (increased wheel wear & wheel RCF)

◆ Intermediate:
 ● Stiffer pads
 ● Partial improvement in tracking performance (reduced wheel wear & wheel RCF)

◆ Long term:
 ● Improved freight truck with reduced stiffness pads & increased warp restraint
 ● Reduced wheel wear & eliminated RCF
Thank you for your attention!

Nicholas Wilson

Transportation Technology Center Inc.
Pueblo
Colorado
USA